Selasa, 13 Oktober 2015

Jenis Rig Berdasarkan Kedalaman Operasi

-->
  • Rig Darat (Land Rig), merupakan rig yang beroperasi di daratan dan dibedakan atas rig besar dan rig kecil. Pada rig kecil biasanya hanya digunakan untuk pekerjaan sederhana seperti Well Service atau Work Over. Sementara itu, untuk rig besar bisa digunakan untuk operasi pemboran, baik secara vertikal maupun direksional. Rig darat ini sendiri dirancang secara portable sehingga dapat dengan mudah untuk dilakukan pembongkaran dan pemasangannya dan akan dibawa menggunakan truk. Untuk wilayah yang sulit terjangkau, dapat menggunakan heliportable.

Gambar Rig Darat (Land Rig)
Rig Laut (Offshore Rig), merupakan rig yang dioperasikan di atas permukaan air seperti laut, rawa-rawa, sungai, danau, maupun delta sungai.
Dari Rig Laut (Offshore Rig) sendiri terbagi atas berbagai macam jenis berdasarkan kedalaman air yaitu:
  • Swamp Barge: merupakan jenis rig laut yang hanya pada kedalaman maksimum 7 meter. Dan, sangat sering dipakai pada daerah rawa-rawa dan delta sungai. Rig jenis ini dilakukan dengan cara memobilisasi rig ke dalam sumur, kemudian ditenggelamkan dengan cara mengisi Ballast Tanksnya dengan air. Pada rig jenis ini, proses pengeboran dilakukan setelah rig duduk didasar dan Spud Cannya tertancap didasar laut.
CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), quality = 92
Gambar Swamp Barge Rig
  • Tender Barge, merupakan jenis rig laut yang sama dengan model Swamp Barge, namun dipakai pada kedalaman yang lebih dalam lagi.
  • Jack Up Rig, rig jenis ini menggunakan platform yang dapat mengapung dengan menggunakan tiga atau empat kakinya. Kaki-kaki pada rig ini dapat dinaikan dan diturunkan, sehingga untuk pengoperasiannya semua kakinya harus diturunkan hingga ke dasar laut. Kemudian, badan dari rig ini diangkat hingga di atas permukaan air dan memiliki bentuk seperti platform. Untuk melakukan perpindahan tempat, semua kakinya harus dinaikan dan badan rignya akan mengapung dan ditarik menggunakan kapal. Pada operasi pengeboran menggunakan rig jenis ini dapat mencapai kedalaman lima hingga 200 meter.
Gambar Jack-Up Rig
  • Drilling Jacket, merupakan jenis rig yang menggunakan platform berstruktur baja. Pada umumnya memiliki bentuk yang kecil dan sangat cocok berada di laut dangkal maupun laut tenang. Rig jenis ini sering dikombinasikan dengan Rig Jack Up maupun Tender Barge.
  • Semi-Submersible Rig, jenis rig yang sering disebut “semis” ini merupakan model rig yang mengapung (Flooded atau Ballasted) yang menggunakan Hull atau semacam kaki. Rig ini dapat didirikan dengan menggunakan tali mooring dan jangkar agar posisinya tetap diatas permukaan laut. Dengan menggunakan Thruster (semacam baling-baling) yang berada disekelilingnya, dan Ballast Control System, sistem ini dijalalankan dengan menggunakan komputer sehingga rig ini mampu mengatur posisinya secara dinamis dan pada level diatas air sesuai keinginan. Rig ini sering dipakai jika Jack Up Rig tidak mampu menjangkau permukaan dasar laut. Karena jenis rig ini sangat stabil, maka rig ini sering dipakai pada lokasi yang berombak besar dan memiliki cuaca buruk, dan pada kedalaman 90 hingga 750 meter.
Gambar Semi-Submersible Rig
  • Drill Ship, merupakan jenis rig yang bersifat mobile dan diletakan di atas kapal laut, sehingga sangat cocok untuk pengeboran di laut dalam (dengan kedalaman lebih dari 2800 meter). Pada kapal ini, didirikan menara dan bagian bawahnya terbuka ke laut (Moon Pool). Dengan sistem Thruster yang dikendalikan dengan komputer, dapat memungkinkan sistem ini dapat mengendalikan posisi kapalnya. Memiliki daya muat yang lebih banyak sehingga sering dipakai pada daerah terpencil maupun jauh dari daratan.

Traveling dan Photography Blog

Kamis, 31 Januari 2013

Jika Galaksi-Galaksi Raksasa Saling Bertabrakan

"Jika Anda memiliki dua galaksi yang kira-kira sebanding dan keduanya berada di jalur tabrakan, maka masing-masing lebih menembus ke pusat satu sama lain, sehingga ada lebih banyak massa yang berakhir di pusat."

Dengan menggunakan “lensa” gravitasional di ruang angkasa, para astronom Universitas Utah menemukan bahwa pusat galaksi-galaksi terbesar bertumbuh menjadi lebih padat – memberi bukti terjadinya tabrakan dan penggabungan secara berulang-ulang antar galaksi-galaksi raksasa.

“Kami menemukan bahwa selama 6 miliar tahun terakhir, materi yang membentuk galaksi elips raksasa semakin terkonsentrasi ke arah pusat galaksi. Ini merupakan bukti bahwa galaksi besar menabrak galaksi besar lainnya untuk membuat galaksi yang lebih besar,” kata astronom Adam Bolton, penulis utama dalam studi baru ini.

“Penelitian-penelitian paling terbaru sebelumnya telah menunjukkan bahwa galaksi besar bertumbuh dengan cara memangsa galaksi-galaksi yang lebih kecil dalam jumlah banyak,” tambahnya. “Kami menunjukkan bahwa tabrakan besar antar galaksi besar adalah sama pentingnya dengan makanan kecil yang banyak.”

Studi baru ini — yang dipublikasikan dalam The Astrophysical Journal –dikerjakan oleh tim Bolton dari Sloan Digital Sky Survey-III dengan menggunakan teleskop optik selebar 2,5 meter pada Apache Point, N.M., dan Teleskop Ruang Angkasa Hubble yang mengorbiti bumi.

Teleskop-teleskop ini pernah digunakan untuk mengamati dan menganalisa 79 “lensa gravitasional,” yang merupakan galaksi di antara bumi dan galaksi-galaksi yang jaraknya lebih jauh. Gravitasi galaksi lensa berguna dalam membelokkan cahaya yang berasal dari galaksi yang lebih jauh, menciptakan sebuah cincin atau sebagian cincin cahaya di sekitar galaksi lensa.

Ukuran cincin itu digunakan untuk menentukan massa pada setiap galaksi lensa, dan kecepatan bintang-bintangnya digunakan untuk menghitung konsentrasi massa di setiap galaksi lensa.

Bolton mengerjakan penelitian ini bersama dengan para tiga astronom lainnya dari Universitas Utah – peneliti pasca-doktoral Joel Brownstein, mahasiswa pascasarjana Yiping Shu dan sarjana Ryan Arneson -juga bersama para anggota Sloan Digital Sky Survey: Christopher Kochanek dari Universitas Ohio State; David Schlegel dari Lawrence Berkeley National Laboratory; Daniel Eisenstein dari Harvard-Smithsonian Center for Astrophysics; David Wake dari Universitas Yale; Natalia Connolly dari Hamilton College, Clinton, NY; Claudia Maraston dari Universitas Portsmouth, Inggris, dan Benjamin Weaver dari Universitas New York.

Makanan besar dan makanan kecil untuk galaksi elips raksasa
Studi baru ini berurusan dengan jenis galaksi-galaksi elips terbesar yang pernah diketahui, masing-masing berisi sekitar 100 milyar bintang. Dengan menghitung “materi gelap” yang tak terlihat, galaksi-galaksi itu mengandung massa sebesar 1 triliun bintang seperti matahari kita.

“Mereka adalah produk akhir dari semua tabrakan dan penggabungan generasi-generasi galaksi sebelumnya, mungkin ratusan tabrakan,” kata Bolton.

Meskipun bukti terbaru dari studi lain menunjukkan bahwa galaksi elips raksasa bertumbuh dengan memangsa galaksi yang jauh lebih kecil, namun simulasi komputer Bolton sebelumnya menunjukkan bahwa tabrakan antar galaksi besar adalah satu-satunya penggabungan galaksi yang mengarah pada meningkatnya kepadatan massa di pusat galaksi elips raksasa.

Ketika sebuah galaksi kecil bergabung dengan yang lebih besar, polanya berbeda. Galaksi kecil terkoyak-koyak oleh gravitasi dari galaksi besar. Bintang-bintang dari galaksi kecil tetap berada di dekat pinggiran galaksi besar, bukan pusatnya.

“Tapi jika Anda memiliki dua galaksi yang kira-kira sebanding dan keduanya berada di jalur tabrakan, maka masing-masing lebih menembus ke pusat satu sama lain, sehingga ada lebih banyak massa yang berakhir di pusat,” kata Bolton.

Penelitian terbaru lainnya menunjukkan bahwa bintang-bintang menyebar lebih luas ke dalam galaksi dari waktu ke waktu, mendukung gagasan bahwa galaksi besar memangsa galaksi-galaksi yang jauh lebih kecil.

“Kami menemukan bahwa galaksi-galaksi itu semakin terkonsentrasi pada massa mereka dari waktu ke waktu meskipun kurang terkonsentrasi pada cahaya yang mereka pancarkan,” kata Bolton.
Bolton meyakini bahwa tabrakan antar galaksi besar menjelaskan bertumbuhnya konsentrasi massa tersebut, sedangkan galaksi yang menelan galaksi-galaksi kecil lebih menjelaskan cahaya bintang yang jaraknya jauh dari pusat galaksi.

“Kedua proses ini penting untuk menjelaskan gambarannya secara keseluruhan,” kata Bolton. “Cara berkembangnya cahaya bintang tidak dapat dijelaskan dengan tabrakan besar, jadi kita benar-benar membutuhkan kedua jenis tabrakan, yaitu tabrakan besar dan kecil — Yang besar dalam jumlah sedikit dan yang kecil dalam jumlah banyak.”


Gambar ini diambil dari Teleskop Ruang Angkasa Hubble, menunjukkan cincin cahaya dari galaksi jauh yang tercipta saat galaksi dekat berada pada latar depan — tidak ditunjukkan dalam gambar ini — bertindak sebagai “lensa gravitasional” untuk membengkokkan cahaya dari galaksi jauh sehingga membentuk cincin cahaya yang dikenal sebagai cincin Einstein. Dalam studi baru, astronom Adam Bolton beserta para kolega mengukur cincin ini untuk menentukan massa dari 79 galaksi lensa yang merupakan galaksi-galaksi elips raksasa. Studi ini menemukan bahwa pusat galaksi-galaksi besar itu semakin memadat dari waktu ke waktu, menjadi bukti terjadinya tabrakan berulang antar galaksi-galaksi raksasa. (Kredit: Joel Brownstein, Universitas Utah, untuk NASA/ESA dan Sloan Digital Sky Survey).
Studi ini juga menunjukkan bahwa tabrakan antar galaksi besar adalah “tabrakan kering” — artinya, galaksi-galaksi yang bertabrakan mengalami kekurangan gas dalam jumlah besar karena sebagian besar gasnya sudah membeku untuk membentuk bintang — dan bahwa galaksi-galaksi yang bertabrakan tidak saling memukul dalam posisi lurus satu sama lain, atau yang diistilah Bolton sebagai “pukulan menyerempet”.

Sloan Bertemu Hubble: Bagaimana Studi Dilakukan
Universitas Utah bergabung pada tahap ketiga Sloan Digital Sky Survey, yang dikenal sebagai SDSS-III, pada tahun 2008. Dengan melibatkan sekitar 20 lembaga riset di seluruh dunia, proyek yang terus berlanjut hingga tahun 2014 ini merupakan upaya internasional dalam memetakan luar angkasa sebagai cara untuk mencari planet-planet raksasa dalam sistem tata surya lain, mempelajari asal usul galaksi dan ekspansi alam semesta, serta menyelidiki materi gelap dan energi gelap misterius yang membentuk sebagian besar alam semesta.

Bolton mengatakan bahwa studi barunya ini “nyaris berkuah” dengan menyertakan sebuah proyek SDSS-III bernama BOSS (Baryon Oscillation Spectrographic Survey). BOSS berupaya dalam mengukur sejarah ekspansi alam semesta dengan presisi yang belum pernah terjadi sebelumnya. Hal itu memungkinkan para ilmuwan untuk mempelajari energi gelap yang mempercepat perluasan alam semesta. Alam semesta diyakini hanya terdiri dari 4 persen materi biasa, 24 persen “materi gelap” kasat mata dan 72 persen energi gelap yang belum-terjelaskan.

Selama penelitian BOSS terhadap galaksi-galaksi, komputer yang menganalisis spektrum cahaya yang dipancarkan galaksi mengungkap puluhan lensa gravitasional, yang ditemukan karena tanda-tanda alam dari dua galaksi yang berbeda berada dalam satu garis.


Gambar dari Teleskop Luar Angkasa Hubble ini sama dengan gambar sebelumnya, tapi tidak melalui pengolahan yang sama. Hasilnya, cincin Einstein dari galaksi jauh menjadi kurang tajam, namun galaksi “lensa gravitasional”-nya menjadi terlihat pada bagian tengah gambar. (Kredit: Joel Brownstein, Universitas Utah, untuk NASA/ESA dan Sloan Digital Sky Survey)
Studi Bolton melibatkan 79 lensa gravitasional yang terobservasi dari dua survei:
  • Survei Sloan dan Teleskop Ruang Angkasa Hubble yang mengumpulkan gambar serta spektrum warna pancaran sinar dari galaksi-galaksi tua yang jaraknya relatif dekat — meliputi 57 lensa gravitasional — 1 milyar hingga 3 milyar tahun di masa lalu.
  • Survei lain yang mengidentifikasi 22 lensa di antara galaksi-galaksi muda yang berjarak lebih jauh, dari 4 miliar hingga 6 miliar tahun di masa lalu.
Cincin cahaya di seputar galaksi lensa gravitasional dinamakan “Cincin Einstein” karena Albert Einstein pernah memprediksi efeknya, meskipun Beliau bukanlah orang pertama yang melakukannya.
“Galaksi-galaksi yang lebih jauh mengirimkan sinar cahaya yang berpencar, namun sinar-sinar yang melintas di dekat galaksi yang lebih dekat bisa dibengkokkan menjadi kesatuan sinar cahaya yang tampak oleh kita sebagai cincin cahaya di seputar galaksi dekat,” kata Bolton.

Semakin besar jumlah materi dalam sebuah galaksi lensa, maka semakin besar pula cincinnya. Itu tampaknya berlawanan dengan intuisi, namun massa yang lebih besar memiliki tarikan gravitasi yang cukup untuk membuat jalur lintasan cahaya bintang jauh sedemikian menikung sehingga bisa terlihat oleh pengamat, menciptakan sebuah cincin yang lebih besar.

Jika terdapat lebih banyak materi yang terkonsentrasi di dekat pusat galaksi, bintang-bintang yang lebih cepat akan terlihat bergerak mendekati atau menjauhi pusat galaksi, kata Bolton.

Teori-teori Alternatif
Bolton dan rekan-rekannya mengakui bahwa pengamatan mereka ini dapat dijelaskan dengan teori-teori lain selain gagasan galaksi yang semakin memadatkan pusatnya dari waktu ke waktu:
  • Gas yang runtuh untuk membentuk bintang dapat meningkatkan konsentrasi massa dalam sebuah galaksi. Bolton berpendapat bintang-bintang dalam galaksi tersebut sudah terlalu tua untuk menguatkan penjelasan ini.
  • Gravitasi dari galaksi-galaksi terbesar menanggalkan galaksi-galaksi “satelit” pada pinggirannya, meninggalkan lebih banyak massa yang terkonsentrasi di pusat galaksi satelit. Bolton berpendapat proses tersebut tidak mungkin bisa menghasilkan konsentrasi massa yang telah terobservasi dalam studi baru ini dan menjelaskan bagaimana tingkat massa pusat berkembang dari waktu ke waktu.
  • Para peneliti hanya mendeteksi batas pada tiap galaksi antara wilayah bagian dalam yang didominasi bintang dan wilayah bagian luar, yang didominasi materi gelap kasat mata. Berdasarkan hipotesis ini, tampilan konsentrasi massa galaksi yang berkembang dari waktu ke waktu itu adalah karena adanya suatu kebetulan dalam metode pengukuran dari para peneliti – mereka mengukur galaksi-galaksi muda pada area yang lebih jauh dari pusatnya dan mengukur galaksi-galaksi tua pada area yang lebih dekat dari pusatnya, menghadirkan ilusi konsentrasi massa di pusat galaksi yang bertumbuh dari waktu ke waktu. Bolton berpendapat bahwa perbedaan pengukuran ini terlalu kecil untuk menjelaskan pola yang terobservasi pada kepadatan materi di dalam galaksi-galaksi lensa.
Jurnal: Adam S. Bolton, Joel R. Brownstein, Christopher S. Kochanek, Yiping Shu, David J. Schlegel, Daniel J. Eisenstein, David A. Wake, Natalia Connolly, Claudia Maraston, Ryan A. Arneson, Benjamin A. Weaver. The Boss Emission-Line Lens Survey. II. Investigating Mass-Density Profile Evolution in the Slacs+bells Strong Gravitational Lens Sample. The Astrophysical Journal, 2012; 757 (1): 82 DOI: 10.1088/0004-637X/757/1/82

http://fhandypandey.com/index.php/Turki/kilas-balik-trojan-war-di-troia-%E2%80%93-canakkale.html

http://fhandypandey.com/index.php/Turki/puing-puing-kota-tua-ephesus.html

http://fhandypandey.com/index.php/Turki/maryem-ana-evi-rumah-maria-ibu-yesus.html

Menembus batas Fisika klasik: Sifat Mekanika Kuantum Cahaya ditunjukkan

Dengan argumentasi sederhana, para peneliti menunjukkan kalau alam itu rumit! Para peneliti dari lembaga Niels Bohr membuat eksperimen sederhana yang menunjukkan kalau alam melanggar akal sehat – dunia berbeda dari sebagian besar orang percaya.


Hasil ini diterbitkan dalam jurnal ilmiah   Physical Review Letters.
Dalam fisika ada dua kategori: fisika klasik dan fisika kuantum. Dalam fisika klasik, objek misalnya mobil atau bola, memiliki posisi dan kecepatan. Ini bagaimana kita secara klasik melihat dunia kita sehari-hari. Di dunia kuantum, benda dapat juga memiliki posisi dan kecepatan, namun tidak di saat yang sama. Bukan semata karena kita tidak tahu posisi dan kecepatan, tapi, kedua hal ini memang tidak dapat ada secara bersamaan. Namun bagaimana kita tahu kalau mereka tidak ada secara serempak? Dan dimana perbatasan dari kedua dunia ini? Para peneliti telah menemukan cara baru menjawab pertanyaan ini.
Cahaya pada mekanika kuantum
“Tujuan kami adalah memakai mekanika kuantum dengan cara baru. Karenanya penting bagi kita untuk tahu kalau sebuah sistem memang berperilaku yang tidak dapat memiliki penjelasan klasik. Pada sisi ini, kami pertama kali memeriksa cahaya,” kata Eran Kot, mahasiswa PhD di tim peneliti, Quantum Optics di Niels Bohr Institute University of Copenhagen.
Berdasarkan sederetan eksperimen di lab optika kuantum, mereka memeriksa keadaan cahaya. Dalam fisika klasik, cahaya memiliki medan listrik dan medan magnet sekaligus.
“Apa yang ditunjukkan oleh studi kami adalah cahaya dapat memiliki medan magnet dan medan listrik, namun tidak secara bersamaan. Kami kemudian memberi bukti sederhana kalau eksperimen memecah prinsip klasik. Dapat dikatakan kalau kami menunjukkan kalau cahaya memiliki sifat kuantum, dan kita dapat memperluas ini pada sistem lain juga,” kata Eran Kot.
Mekanika klasik dan non-klasik
Tujuan penelitian ini adalah memahami dunia secara mendasar, namun ada juga tantangan praktis untuk mengeksploitasi mekanika kuantum dalam konteks yang lebih luas. Bagi cahaya tidaklah mengejutkan kalau ia berperilaku mekanis kuantum, namun metode lain juga sedang dikembangkan untuk mempelajari sistem lain.
“Kami berusaha mengembangkan komputer kuantum masa depan dan kami karenanya perlu memahami batasan dimana sesuatu berperilaku mekanis kuantum dan kapan ia berperilaku mekanis klasik,” kata profesor fisika kuantum, Anders S Sorensen, menjelaskan kalau komputasi kuantum harusnya tersusun dari sistem-sistem dengan sifat non klasik.

Fermi NASA mengukur ‘Kabut’ Kosmik yang dihasilkan Sinar Bintang Purba

Astronom menggunakan data dari Teleskop Antariksa sinar Gamma Fermi milik NASA membuat pengukuran sinar bintang paling akurat di alam semesta dan memakainya untuk menghitung jumlah total cahaya dari semua bintang yang pernah bersinar, memenuhi tujuan misi yang utama.

 “Cahaya tampak dan ultraviolet dari bintang terus bergerak di alam semesta bahkan setelah bintang tersebut berhenti bersinar, dan ini menciptakan medan radiasi fosil yang dapat kita jelajahi menggunakan sinar gamma dari sumber jauh,” kata kepala ilmuan   Marco Ajello, seorang peneliti pasca doctoral di  Kavli Institute for Particle Astrophysics and Cosmology Stanford University California dan Space Sciences Laboratory University of California Berkeley.
Sinar gamma adalah bentuk cahaya yang paling berenergi. Sejak peluncuran Fermi tahun 2008,  Large Area Telescope (LAT) mengamati seluruh langit mencari sinar gamma energi tinggi setiap tiga jam, menciptakan peta alam semesta paling detail mengenai energi ini.
Jumlah total sinar bintang di alam semesta diketahui para astronom sebagai cahaya latar belakang luar galaksi – extragalactic background light (EBL). Untuk sinar gamma, fungsi EBL seperti semacam kabut kosmik. Ajello dan timnya menyelidiki EBL dengan mempelajari sinar gamma dari 150 blazar, atau galaksi yang ditenagai oleh lubang hitam, yang dengan kuat dideteksi memiliki energy lebih besar dari 3 miliar electron volt (GeV), atau lebih dari satu miliar kali energi cahaya tampak.
“Dengan lebih dari seribu yang telah dideteksi saat ini, blazer adalah sumber paling umum yang dideteksi Fermi, namun sinar gamma pada energy ini hanya sedikit dan jauh, itu mengapa perlu empat tahun data untuk membuat analisis ini,” kata anggota tim  Justin Finke, astrofisikawan dari Naval Research Laboratory Washington.
Saat materi jatuh ke lubang hitam supermasif galaksi, sebagian darinya dipercepat keluar pada kecepatan nyaris sama dengan cahaya dalam jet yang menuju ke arah berlawanan. Ketika satu dari jet ini kebetulan mengarah ke Bumi, galaksinya tampak sangat cemerlang dan digolongkan sebagai sebuah blazar.
Sinar gamma yang dihasilkan dalam jet blazar bergerak melintasi miliaran tahun cahaya ke Bumi. Saat perjalanannya, sinar gamma melewati kabut cahaya tampak dan ultraviolet yang dipancarkan oleh bintang yang terbentuk sepanjang sejarah alam semesta.
Biasanya, sinar gamma bertabrakan dengan sinar bintang dan mengubahnya menjadi pasangan partikel – satu elektron dan pasangan anti materinya, satu positron. Ketika ini terjadi, sinar gamma hilang. Akibatnya, proses ini mengecilkan sinyal sinar gamma mirip seperti kabut membuat redup mercusuar yang jauh.
 Dari studi pada blazar dekat, para ilmuan telah menemukan seberapa banyak sinar gamma harus dipancarkan pada energi tertentu. Blazar yang lebih jauh menunjukkan lebih sedikit sinar gamma pada energy tinggi – khususnya di atas 25 GeV – karena penyerapan oleh kabut kosmik.
 Blazar terjauh kehilangan paling banyak sinar gamma energi tingginya.
Para peneliti kemudian menentukan atenuasi rata-rata sinar gamma sepanjang tiga jangkauan jarak antara 9.6 miliar tahun lalu dan sekarang.
 Dari pengukuran ini, para ilmuan mampu memperkirakan ketebalan kabut. Untuk mempertimbangkan pengamatan, rata-rata kepadatan bintang di alam semesta adalah sekitar 1,4 bintang per 100 miliar tahun cahaya kubik, yang artinya rata-rata jarak antar bintang di alam semesta adalah sekitar 4.150 tahun cahaya.
 Sebuah makalah menjelaskan temuan ini dalam Science Express.
“Hasil Fermi membuka kemungkinan menarik dari pembatasan periode pembentuk bintang alam semesta tertua, sehingga memberi panggung bagi  James Webb Space Telescope NASA,” kata Volker Bromm, astronom dari University of Texas, Austin, yang berkomentar atas temuan ini. “Secara sederhana, Fermi memberi kita gambaran bayangan bintang pertama, sementara Webb akan secara langsung mendeteksinya.”
 Mengukur cahaya latar belakang ekstra galaksi adalah salah satu tujuan misi utama Fermi.
“Kami sangat gembira mengenai prospek memperluas pengukuran ini lebih jauh lagi,” kata  Julie McEnery, ilmuan proyek misi dari  Goddard Space Flight Center Greenbelt, Md.
Goddard mengatur rekanan penelitian fisika partikel dan astrofisika Fermi. Fermi dikembangkan dalam kerjasama antara Kementrian Energi AS dengan kontribusi dari lembaga akademis dan mitra dari Prancis, Jerman, Italia, Jepang, Swedia, dan AS.
Sumber berita: